If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-84y+192=0
a = 9; b = -84; c = +192;
Δ = b2-4ac
Δ = -842-4·9·192
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12}{2*9}=\frac{72}{18} =4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12}{2*9}=\frac{96}{18} =5+1/3 $
| 2w+2(w+41/4)=1321/2 | | -8=-4-d/3 | | 1/2(9k+12)=15 | | 3(3y^2-28y+64=0 | | 6y-4y=16 | | -2(x+6)-5=-23 | | 3(x-1)+5=-7 | | 7x+156=9x | | 11+x/4=19 | | 9p+11=29 | | 9=6+3c | | -3(x+5)-5=-35 | | 3-9x=-6-7x | | 3=r−-43 | | 3=r−-4/3 | | 3(3x+4)=-3(4x-5)+2x | | 7-5x=2x+4-7x | | x^2+8x-600=0 | | 2/3x+1/2x=15 | | x^2+8x=600 | | 3x-91=11 | | 5h+21(11-h)=-5 | | x+1/8=1-x+6/3 | | 2(v−6)=4 | | x-$417.23=$111.43 | | -4(x+1)-4=-16 | | h+2/3=2 | | 18h+3h(-4h+2)=9 | | 5(x-3)+7(2x-7)-3x+3=11-8(x-7)+4x-(6-5x)+8-2x | | f+1=7 | | 3(x-4)-18=-12 | | q+22=2 |